NEW ALKALI METAL AND TETRAMETHYLAMMONIUM TETRAFLUOROARSENATES(III), THEIR VIBRATIONAL SPECTRA AND CRYSTAL STRUCTURE OF CESIUM TETRAFLUOROARSENATE(III)

Peter KLAMPFER^{*a*1}, Primož BENKIČ^{*a*2}, Antonija LESAR^{*a*3}, Bogdan VOLAVŠEK^{*b*}, Maja PONIKVAR^{*a*4} and Adolf JESIH^{*a*5,*}

^a Institute Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia; e-mail: ¹ peter.klampfer@ijs.si, ² primoz.benkic@ijs.si, ³ antonija.lesar@ijs.si, ⁴ maja.ponikvar@ijs.si, ⁵ adolf.jesih@ijs.si

^b Faculty of Chemistry and Chemical Engineering, Smetanova 17, 2000 Maribor, Slovenia; e-mail: bogdan.volavsek@uni-mb.si

> Received March 17, 2003 Acepted July 10, 2003

The title compounds were synthesised by the reaction of alkali metal and tetramethylammonium fluorides with liquid AsF_3 . Crystal structure of $CsAsF_4$ was determined. Raman and infrared spectra of the title compounds were analysed.

Keywords: Fluoroarsenates(III); Arsenates; Arsene fluoride; Crystal structure; Infrared spectroscopy; Raman spectroscopy; X-ray diffraction.

Out of the complex fluorides of the group-15 elements, fluoroantimonates(III) appear to be the most studied¹. Fluoroarsenates(III) are rare²⁻⁶, known mostly as tetrafluoroarsenates(III) and heptafluorodiarsenates(III)^{2,3,6}, very recently also as tridecafluorotetraarsenates(III)⁷. They lack the characterisation by vibrational spectroscopy. The first and the only published fluorophosphate(III)⁸ was (CH₃)₄NPF₄ in 1994. In the present work the syntheses of two new fluoroarsenates(III), NaAsF₄ and (CH₃)₄NAsF₄, are reported, the vibrational spectra of simple fluoroarsenates(III) of the general formula MAsF₄ (M = Na, Rb, Cs, (CH₃)₄N) are analysed and the crystal structure of CsAsF₄ is presented.

EXPERIMENTAL

Materials

CsF (Aldrich; 99%) was melted, rapidly transferred into a drybox filled with dry argon and ground after cooling⁹. RbF was prepared by the reaction of Rb_2CO_3 and 40% aqueous HF; after addition of NH_4F , it was heated in a nitrogen flow at 570 K (ref.¹⁰). (CH₃)₄NF (Aldrich; 97%) was used as received. AsF₃ was prepared by the reaction of anhydrous HF and As₂O₃ at

470 K in a 300-cm³ stainless steel reactor and subsequently purified by bubbling through concentrated H_2SO_4 . CsAsF₄ and RbAsF₄ were prepared from CsF and RbF in liquid AsF₃ at 353 K in a tube reactor made of the copolymer of tetrafluoroethylene with perfluoroalkyl vinyl ether (PFA)^{2,3}.

Syntheses

 $(CH_3)_4NAsF_4$ and $NaAsF_4$ were synthesised by the original procedure for the preparation of alkali metal fluoroarsenates(III), by dissolving $(CH_3)_4NF$ and NaF, respectively, in liquid AsF₃ at 353 K in a PFA tube reactor^{2,3}. The reaction mixtures were cooled to room temperature and excess AsF₃ was removed on a vacuum line while the reaction mixture was held at 295 K in the case of $(CH_3)_4NAsF_4$ and at 273 K in the case of $NaAsF_4$. Both $(CH_3)_4NAsF_4$ and $NaAsF_4$ are white powders, sensitive to atmospheric moisture. $(CH_3)_4NAsF_4$ is stable at room temperature. NaAsF₄ is stable at 258 K, while at room temperature it readily decomposes to give NaF and AsF₃.

Due to the thermal decomposition of $NaAsF_4$ at room temperature, we could not perform a reliable chemical analysis of this compound or obtain its infrared spectrum. Therefore, evidence of the existence of $NaAsF_4$, in addition to its Raman spectrum, was provided by following the weight loss of the reaction mixture (AsF_3 and $NaAsF_4$) while removing the volatiles on a vacuum line at 258 K (Fig. 1). The weight loss vs time curve clearly shows a change in the slope at a 1:1 $NaF:AsF_3$ ratio. Raman spectra of the solid product of the reaction of NaF and AsF_3 were recorded in regular intervals while removing the volatiles from the tube reactor at 295 K, in the 1:5 to 5:1 range of molar ratios $NaF:AsF_3$. No change in the Raman spectra was observed, except the diminishing intensity. This indicates that the Raman bands are attributable to a single compound, namely $NaAsF_4$. The starting compound, NaF, under the same experimental conditions, did not provide sufficient signal to record a Raman spectrum.

In another experiment, $NaAsF_4$ was allowed to decompose at room temperature and the volatiles were removed. The white powder remaining in the reactor was identified by X-ray powder diffraction as NaF.

Fig. 1

The dependence of the total weight of the sample, $m_{\rm t}$, on the time of pumping off volatiles in the course of the NaAsF₄ preparation at 258 K

Chemical Analyses

The content of the free fluoride ions (F_f) was determined, after reaction with water, using an ion-selective electrode^{11,12}. The total amount of fluoride ions (F_t) was determined by the same method, after decomposition of the sample.

The arsenic content was determined by the ICP-AES method¹³. For $(CH_3)_4NAsF_4$ (225.1) calculated: 33.29% As, 33.77% F; found: 35.2% As, 33.8% F_t, 33.6% F_f.

Methods

X-Ray diffraction patterns of the powdered solid samples were obtained using a Debye–Scherrer camera with CuK α radiation. Single-crystal X-ray diffraction data were collected on a Rigaku AFC7S diffractometer with graphite monochromatised MoK α radiation at 293(1) K, using the ω -2 θ scan technique with a maximum 2 θ value of 65.0°. The weak reflections ($I < 10.0\sigma(I)$) were rescanned with a maximum of 6 scans and the counts were accumulated to ensure good counting statistics. Further details are given in Tables I and II.

TABLE I Data for the crystal structure determination of $CsAsF_4$

Formula	CsAsF
Formula weight	283.83
Crystal system	monoclinic
Crystal size, mm	0.15 imes 0.15 imes 0.1
Space group	<i>P</i> 2 ₁ (No. 4)
a, pm	659.7(1)
b, pm	487.2(1)
<i>c</i> , pm	849.22(8)
β, °	111.92
<i>V</i> , nm ³	0.25321(8)
Ζ	2
<i>Т</i> , К	293(2)
μ (MoK α), mm ⁻¹	13.748
$D_{\rm c}$, g cm ⁻³	3.723
<i>F</i> (000)	248
Θ_{\max} , °	32.50
No. of diffractions measured	2149
No. of diffractions unique, R_{int}	1829
No. of diffractions observed $[I > 2\sigma(I)]$	1148
<i>R</i> 1 (all); <i>R</i> 1	0.0742; 0.0286
WR (all); wR	0.0813; 0.0684
ρ , e nm ⁻³	660 and -694
Programs used	SHELXL97 ¹⁴ , SIR92 ¹⁵

The structure of CsAsF_4 was solved using direct methods¹⁵. An empirical ψ -absorption correction based on azimuthal scans of several reflections was used, which resulted in transmission factors ranging from 0.225 to 0.249. During the full-matrix least-squares refinement¹⁴ on F^2 , racemic twinning was observed, resulting in the Flack parameter of 0.44(8). CCDC 413041 contains the supplementary crystallographic data for CsAsF₄. These data can be obtained free of charge *via* www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

Vibrational Spectroscopy

A Renishaw Raman microscope 1000 with a He-Ne (632.8 nm) laser excitation source was employed to record Raman spectra of solid samples. Infrared spectra were recorded as Nujol or Fluorolube mulls on a Perkin Elmer FTIR 1710 infrared spectrometer.

Theoretical Characterisation of AsF₄⁻ Anion

The electronic molecular orbital calculations were carried out using Gaussian 98 program¹⁶. The equilibrium structure of AsF_4^- was fully optimised by the second-order Møller–Plesset (MP2) method¹⁷, and the Becke three-parameter nonlocal exchange functional¹⁸ with the nonlocal correlation of Lee, Yang and Parr (B3LYP)^{19,20}. The large 6-311+G(3df) basis set, as implemented in the program, was employed in the calculations. The harmonic frequencies were computed from numerical and analytical derivatives at the MP2 and B3LYP levels, respectively, using geometries calculated at the same levels of theory.

RESULTS AND DISCUSSION

 $(CH_3)_4NF$ and NaF were reacted with liquid AsF₃ at 358 K. From the reaction mixtures, $(CH_3)_4NAsF_4$ and NaAsF₄ were isolated at 295 and 273 K, respectively. The synthesis of LiAsF₄ was attempted at 358 K (using LiF and a large excess of AsF₃) but no hint of its existence was detected even upon cooling the reaction mixture to 253 K.

Fractional atomic coordinates and displacement parameters for CsAsF ₄					
Atom	X	у	Ζ	$U_{\rm eq}^{\ a}$, pm ²	
Cs1	0.09711(6)	-0.2066	0.78213(5)	0.03621(13)	
As1	0.54168(10)	0.2912(6)	0.68915(7)	0.03432(15)	
F1	0.2339(7)	0.283(3)	0.5867(6)	0.0648(18)	
F2	0.4940(8)	0.3642(14)	0.8738(6)	0.057(2)	
F3	0.5457(11)	-0.0440(11)	0.7040(9)	0.0635(17)	
F4	0.8398(7)	0.315(3)	0.8337(6)	0.0454(16)	

TABLE II Fractional atomic coordinates and displacement parameters for CsAsF₄

^a One third of the trace of orthogonalised U_{ij} tensor.

Crystal Structure of CsAsF₄

CsAsF₄ crystallises in the $P2_1$ (No. 4) space group, with a = 659.7(1), b = 487.2(1) and c = 849.22(8) pm, $\beta = 111.92^{\circ}$, V = 0.25321(8) nm³, and containing two formula units in the cell. The structure of CsAsF₄ is composed of Cs⁺ cations and AsF₄⁻ anions. As1 in CsAsF₄ is linked to four fluorine atoms (Fig. 2, Table III). AsF₄⁻ anion adopts a bisphenoidal shape, found in SF₄ (ref.²¹) and SeF₄ (ref.²²), with two long axial and two short equatorial bonds. The angle F1-As1-F4 in CsAsF₄ is 168.1(3)° (Table III) close to the corres-

TABLE III

Selected bond lengths (in pm) and angles (in °) in $CsAsF_4$, $N_2H_6AsF_4F$ (ref.⁸) and 1,1,3,3,5,5-hexamethylpiperidinium fluoroarsenate(III) (pip⁺AsF₄⁻)⁴, and comparison with data calculated for the AsF_4^- anion

Atoms	CsAsF ₄	$\mathrm{N_2H_6AsF_4F}$	pip ⁺ AsF ₄ ⁻	Method		
				MP2/ 6-311+G(3df)	B3LYP/ 6-311+G(3df)	
As1-F1	188.7(4)	173.9(3)	187.8(2)	188.1	190.8	
As1-F2	174.7(5)	173.2(3)	172.4(2)	175.8	177.3	
As1-F3	163.8(7)	174.4(3)	172.7(2)	175.8	177.3	
As1-F4	189.3(4)	259.2(4)	186.2(3)	188.1	190.8	
F1-As1-F4	168.1(3)	164.1(1)	165.7(1)	168.3	170.8	
F1-As1-F3	89.9(6)	90.9(1)	85.2(1)	86.2	87.0	
F1-As1-F2	84.0(3)	91.1(1)	84.4(1)	86.2	87.0	
F2-As1-F3	97.9(3)	93.5(1)	97.5(1)	98.3	98.1	

Fig. 2

ORTEP drawing³⁶ of AsF_4^- anion in $CsAsF_4$ (Table III), with thermal ellipsoids representing 50% probability

Collect. Czech. Chem. Commun. (Vol. 69) (2004)

ponding angle in KAs_2F_7 (167.3(5)°)⁶ and in 1,1,3,3,5,5-hexamethylpiperidinium fluoroarsenate(III) (165.7(1)°)⁴. The corresponding angle in AsF₄ units of CsAs₄F₁₃ is 164.3(1)° (ref.⁷).

Further close contacts of As1 to fluorine atoms in $CsAsF_4$ are those to $F3^g$ (324.1(7) pm) and $F3^h$ (326.8(8) pm), almost at the van der Waals distance (335 pm)²³. Cesium atom adopts decacoordination (Fig. 3). The distances between Cs1 and fluorine atoms range from 301.0(12) pm (Cs1–F4) to 353.6(8) pm (Cs1–F3^b). The environment of Cs1 is better described in therms of distorted octahedra of six AsF₄ units. Four AsF₄ units are linked to Cs1 with two fluorine atoms, and two AsF₄ units are linked to Cs1 with one fluorine atom (Fig. 3).

Vibrational Spectra of Fluoroarsenates(III), $MAsF_4$ (M = Na, Rb, Cs, $(CH_3)_4N$)

Vibrational spectra of MAsF₄ (M = Na, Rb, Cs, $(CH_3)_4N$) in the 200–800 cm⁻¹ region (Raman) and in the 250–800 cm⁻¹ region (IR) are shown in Figs 4, 5 and Tables IV, V. Bands in the vibrational spectra of $(CH_3)_4NAsF_4$ were assigned to vibrations of the $(CH_3)_4N^+$ cation and the AsF₄⁻ anion, and those in the vibrational spectra of NaAsF₄, RbAsF₄ and CsAsF₄ only to vibrations of the AsF₄⁻ anion.

The vibrational spectrum of $(CH_3)_4NAsF_4$ in the 200–4000 cm⁻¹ region was compared with those of $(CH_3)_4NF$ (ref.²⁴) $(CH_3)_4NCl$, $(CH_3)_4NBr$, $(CH_3)_4NI$ (refs^{25,26}) and $(CH_3)_4NPF_4$ (ref.⁸). The following bands were assigned to vibrations of the $(CH_3)_4N^+$ cation. IR (v, cm⁻¹): 3126 w, 3042 s, 2973 w, 2589 w, 2523 w, 2484 w, 2365 w, 1787 w, 1711 w, 1495 vs, 1415 m, 1209 w, 1176 w, 1030 w, 953 vs, 922 sh, 447 sh. Raman (v, cm⁻¹): 3364 (0.1), 3039 (10), 2987 sh, 2964 (8.0), 2923 (2.8), 2890 sh, 2812 (1.7), 2239 (0.1), 1653 (0.1), 1641 sh, 1537 (0.1), 1470 (3.9), 1410 (0.5), 1372 (0.1), 1288 (0.3), 1176 (0.5), 947 (5.4), 914 sh, 831 (0.2), 751 (6.9), 447 sh.

In MAsF₄ (M = Rb, Cs, (CH₃)₄N), the cations are large and do not allow significant distortion of the AsF₄⁻ anion, while in NaAsF₄ and N₂H₆AsF₄F (ref.⁸) the cations interact strongly with the fluorine atoms of the AsF₄⁻ anion, which results in its deformation. The assignment of bands attributed to vi-

FIG. 4 Raman spectra of MAsF₄ (M = (CH₃)₄N (1), Cs (2), Rb (3), Na (4))

Fig. 5

Infrared spectra (Nujol) of $MAsF_4$ (M = (CH₃)₄N (1), Cs (2), Rb (3)). Bands marked with asterisks are due to Nujol

brations of the AsF₄⁻ anion (C_{2v}) in the vibrational spectra of (CH₃)₄NAsF₄, CsAsF₄ and RbAsF₄ was made by comparison with the vibrational spectra of isoelectronic SeF₄ (ref.²²) and fluoroantimonates(III)²⁷⁻²⁹, taking into account the mass differences. The vibrational representation for the AsF₄⁻ unit (C_{2v}) contains the species 4a₁ + a₂ + 2b₁ + 2b₂. Nine of them generate

TABLE IV

Infrared and Raman spectra (v, cm⁻¹) of fluoroarsenates(III), $MAsF_4$ (M = (CH₃)₄N, Cs, Rb)^{*a*}, in the range 250–800 cm⁻¹, and their assignment

(CH ₃) ₄ NAsF ₄		С	CsAsF ₄		RbAsF ₄	
Raman ^b	IR	Raman ^b	IR	Raman ^b	IR	
650(7.8)	648 vs	659(10)	654 sh 642 vs	662(10)	685 w 643 vs	$(A_1)v_1$
603(3.0)	606 vs	592(7.4)	596 vs 585 s	582(10)	594 vs 583 sh	(B ₂)v ₈
447 sh 441(5.5)	444 sh	447(3.2)	422 sh	447(2.7)	480 m	$(A_1)v_2$
	411 vs	397(0.2)	394 vs	385(0.5)	424 m	$(B_1)v_6$
373(1.7) 347(0.7)	378 w 352 s	377(0.7) 354(1.3)	454 m	353(0.8)	400 vs 356 s	$(B_1)v_7$
317 sh	322 s	325(1.9)	322 s	323(1.7)	326 vs	$(A_1)v_3$
313(8.3)	299 w 291 w 280 w 271 w	311(1.4)	305 sh 296 sh 285 w	309(1.4)	302 w 282 w 275	(A ₂)ν ₅

 a s, strong; m, medium; w, weak; v, very; sh, shoulder. b Raman intensities are given in parentheses.

TABLE V Raman spectrum ^a of NaAsF ₄ in the range 200–800 \circ	cm ⁻¹ , and its assignment
v^b , cm ⁻¹	Assignment
683(8.4); 653(10); 648 sh; 614(6.9); 593(5.1)	AsF _{eq}) _s
459 sh; 438(2.9)	(AsF _{ax}) _s
358 sh; 349(2.9); 273(0.8)	(AsF) _d

^a sh, shoulder. ^b Raman intensities are given in parentheses.

Raman-active fundamentals $(4a_1 + a_2 + 2b_1 + 2b_2)$; eight of them are allowed in the infrared spectrum $(4a_1 + 2b_1 + 2b_2)^{22}$.

The symmetry of the distorted AsF_4^- anion in $N_2H_6AsF_4F$ (ref.⁸) is C_s . Due to the presence of the small Na^+ cation of high polarising power, the AsF_4^- anion in $NaAsF_4$ is expected to be distorted in the same manner. However, based on the experimental data (Table V) for the AsF_4^- anion in $NaAsF_4$, it was not possible to distinguish between C_s and C_i symmetries.

Theoretical Characterisation of the AsF_4^- Anion Geometry

The optimised C_{2v} geometric parameters of the ${}^{1}A_{1}$ ground state of AsF₄⁻ are given in Table III. The differences in the As–F bond lengths and F–As–F bond angles between the two theoretical methods are less than 2 pm and 1°, respectively. We believe that the geometry predictions are of good quality. Note that both methods, using the same basis set, were tested on the AsF₃ molecule, which is well characterised. The calculated structural parameters as well as vibrational frequencies were found to satisfactorily reproduce the experimental data.

Harmonic Vibrational Frequencies

The equilibrium structure of the AsF_4^- anion has been confirmed to be represented by minima, by evaluation of its vibrational frequencies. These data are provided in Table VI, together with the IR intensities. A comparison of the MP2 and B3LYP frequencies and intensities shows that there is a reasonably good agreement between the two approaches.

The B3LYP calculations predict the As- $F_{2,eq}$ symmetric and asymmetric stretching frequencies of 627 and 590 cm⁻¹, respectively, with relatively high IR intensities. These two vibrations reasonably match the bands around 642 and 585 cm⁻¹ observed in the IR spectra of CsAsF₄ and RbAsF₄. The As- $F_{2,ax}$ asymmetric stretching vibration at 431 cm⁻¹ resulted from the calculations as the most intense in IR. It may correspond to the very strong infrared bands observed at 394 cm⁻¹ for CsAsF₄ and 424 cm⁻¹ for RbAsF₄. Among the other calculated frequencies, that of 296 cm⁻¹ has a noticeable IR intensity, which likely corresponds to the weak band detected around 280 cm⁻¹. The relatively good agreement between the calculated frequencies and the observed values supports the conclusions that the geometry of free AsF₄⁻ is preserved in the studied solid MAsF₄ (M = Rb, Cs, (CH₃)₄N) compounds.

Coordination of Arsenic Atom in CsAsF₄

Arsenic atom As1 in CsAsF₄ is coordinated by four fluorine atoms, two axial and two equatorial. The axial bonds in AsF₄⁻ are weaker than the equatorial ones. The increase in the ratio of As–F axial-to-equatorial bonding distances, r_{ax}/r_{eq} , from 1.02 to 1.11 was found for the isoelectronic series^{8,29} IF₄⁺, TeF₄, SbF₄⁻. Similar values were obtained for the isoelectronic series BrF₄⁺, SeF₄, AsF₄⁻, where the ratio increases from 1.048 to 1.088 going from BrF₄⁺ to AsF₄⁻ (refs^{8,29,30}).

For the coordination in alkaline fluoroantimonates(III), Ducourant and Fourcade²⁸ observed three different types (E = electron lone pair): AX_6E (monocapped octahedron), AX_5E (octahedron) and AX_4E (trigonal bipyramid), with individual intermediate cases. The AsF_4^- anion in CsAsF₄ belongs to trigonal bipyramid. In terms of the VSEPR theory³¹⁻³⁵ the trigonal bipyramid in AsF_4^- is defined by the four fluorine atoms and the lone pair. There are two additional fluorine atoms F3^g and F3^h at the distances close to the van der Waals distance, defining a distorted octahedron.

TABLE VI

Assignment	MP2/6-311+G(3df)		B3LYP/6-311+G(3df)		Dominant normal
	frequency	IR intensity	frequency	IR intensity	mode ^a
$(A_1)v_1$	662	111	627	107	As–F _{2,eq} symm. stretching
$(A_1)v_2$	463	434	431	420	As-F _{2,ax} asymm. stretching
$(A_1)v_3$	325	26	296	20	As-F ₄ umbrella
$(A_1)v_4$	159	2	145	2	F _{eq} -As-F _{ax} bending
$(A_2)v_5$	307	0	282	0	F _{eq} -As-F _{eq} bending
$(B_1)v_6$	448	0.1	424	0.1	As–F _{2,ax} symm. stretching
$(B_1)v_7$	344	5	315	0.1	As-F ₄ wagging
(B ₂)v ₈	632	145	590	143	As-F _{2,eq} asymm. stretching
$(A_1)v_9$	202	10	184	10	F_{ax} -As- F_{ax} bending

Calculated harmonic vibrational frequencies (in $\rm cm^{-1})$ and IR intensities (in km mol^{-1}) for the $\rm AsF_4^-$ anion

^a Based on inspection of normal mode animation.

16. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Jr., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Andres J. L., Gonzalez C., Head-Gordon M.,

- 3. Muetterties E. L., Phillips W. D.: J. Am. Chem. Soc. 1957, 79, 3686. 4. Zhang X., Seppelt K.: Z. Anorg. Allg. Chem. 1997, 623, 491.
- 5. Klampfer P., Benkič P., Ponikvar M., Rahten A., Lesar A., Jesih A.: Monatsh. Chem. 2003, 134(1), 1.

1. Fisher G. A., Norman N. C. in: Advances in Inorganic Chemistry (A. G. Sykes, Ed.),

The authors gratefully acknowledge the funding support given by the Slovenian Ministry of Educa-

6. Edwards A. J., Patel S. N.: J. Chem. Soc., Dalton Trans. 1980, 1630.

p. 233-271. Academic Press, New York 1984.

2. Wolf A. A., Greenwood N. N.: J. Chem. Soc. 1950, 2200.

- 7. Klampfer P., Volavšek B., Benkič P., Jesih A.: Dalton Trans. 2003, 163.
- 8. Christe K. O., Dixon D. A., Mercier H. P. A., Sanders J. C. P., Schrobilgen G. J., Wilson W. W.: J. Am. Chem. Soc. 1994, 116, 2850.
- 9. Schack C. J., Wilson R. D., Warner G. M.: Chem. Commun. 1969, 1110.
- 10. Brauer G.: Handbuch der Präparativen Anorganischen Chemie, Vol. 1, p. 246. Ferdinand Enke Verlag, Stuttgart 1975.
- 11. Sedej B.: Talanta 1976, 23, 335.
- 12. Ponikvar M., Sedej B., Pihlar B., Žemva B.: Anal. Chim. Acta 2000, 418, 113.
- 13. Boumans P. W. J. M.: Inductively Coupled Plasma Emission Spectroscopy, Part 1, p. 83. John Wiley and Sons, New York 1987.
- 14. Sheldrick G. M.: SHELXL97, Program for the Refinement of Crystal Structures from Diffraction Data. University of Göttingen, Göttingen 1999.
- 15. Altomare A., Cascarano M., Giacovazzo C., Guigliardi A.: J. Appl. Crystallogr. 1994, 26, 343.
- Replogle E. S., Pople J. A.: Gaussian 98, Revision A.5. Gaussian, Inc., Pittsburgh (PA) 1998.
- 17. Hehre W. J., Radom L., Schleyer P. v. R., Pople A. J.: Ab initio Molecular Orbital Theory. Wiley-Interscience, New York 1986.
- 18. Becke A. D. J.: Chem. Phys. 1993, 98, 5648.
- 19. Lee C., Yang W., Parr W.: Phys. Rev. B: Condens. Matter 1988, 37, 785.
- 20. Miehlich B., Savin A., Stoll H., Preuss H.: Chem. Phys. Lett. 1989, 157, 200.
- 21. Christe K. O., Curtis E. C., Schack C. J.: Spectrochim. Acta, Part A 1976, 32, 1141.
- 22. Adams C. J., Downs A. J.: Spectrochim. Acta, Part A 1972, 28, 1841.

tion, Science and Sport.

REFERENCES

Klampfer et al.:

- 23. Pauling L.: *The Nature of the Chemical Bond*, 3rd ed., p. 189. Cornell University Press, Ithaca (NY) 1948.
- 24. Christe K. O., Wilson W. W., Wilson R. D., Bau R., Feng J.: J. Am. Chem. Soc. 1990, 112, 7619.
- 25. Bottger G. L., Geddes A. L.: Spectrochim. Acta 1965, 21, 1701.
- 26. Harmon K. M., Gennick I., Madeira S. L.: J. Phys. Chem. 1974, 78, 2585.
- 27. Adams C. J., Downs A. J.: J. Chem. Soc. A 1971, 1534.
- 28. Ducourant B., Fourcade R.: C. R. Acad. Sci., Ser. II 1976, 282, 741.
- 29. Habibi N., Ducourant B., Fourcade R., Mascherpa G.: Bull. Soc. Chim. Fr. 1974, 11, 2320.
- 30. Baird H. W., Giles H. F.: Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. **1969**, 25, S115.
- 31. Lind M. D., Christe K. O.: Inorg. Chem. 1972, 11(3), 608.
- 32. Bowater I. C., Brown R. D., Burden F. R.: J. Mol. Spectrosc. 1968, 28, 454.
- 33. Brown I. D.: J. Solid State Chem. 1974, 11, 114.
- 34. Alcock N. W.: Adv. Inorg. Chem. Radiochem. 1972, 15, 1.
- 35. Sawyer J. F., Gillespie R. J.: Prog. Inorg. Chem. 1986, 34, 65.
- Burnet M. N., Johnson C. K.: ORTEP-III, Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge (TN) 1996.